Open Mode Design (FO-CAP), X7R Dielectric, 16 – 200 VDC (Commercial & Automotive Grade) ### **Overview** KEMET's Ceramic Open Mode capacitor in X7R dielectric is designed to significantly minimize the probability of a low IR or short circuit condition when forced to failure in a board stress flex situation, thus reducing the potential for catastrophic failure. The Open Mode capacitor may experience a drop in capacitance; however, a short is unlikely because a crack will not typically propagate across counter electrodes within the device's "active area." Since there will not be any current leakage associated with a typical Open Mode flex crack, there is no localized heating and therefore little chance for a catastrophic and potentially costly failure event. Driven by the demand for a more robust and reliable component, the Open Mode capacitor was designed for critical applications where higher operating temperatures and mechanical stress are a concern. These capacitors are widely used in automotive circuits as well as power supplies (input and output filters) and general electronic applications. Concerned with flex cracks resulting from excessive tensile and shear stresses produced during board flexure and thermal cycling? These devices are available with KEMET's Flexible termination technology which inhibits the transfer of board stress to the rigid ceramic body, therefore mitigating flex cracks which can result in low IR or short circuit failures. Although flexible termination technology does not eliminate the potential for mechanical damage that may propagate during extreme environmental and handling conditions, it does provide superior flex performance over standard termination systems. When combined with flexible termination technology these devices offer the ultimate level of protection against a low IR or short circuit condition. Open Mode devices compliment KEMET's Floating Electrode (FECAP) and Floating Electrode with Flexible Termination (FF-CAP) product lines by providing a fail-safe design optimized for mid to high range capacitance values. These devices exhibit a predictable change in capacitance with respect to time and voltage and boast a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to ±15% from -55°C to +125°C. # **Ordering Information** | С | 1210 | J | 685 | K | 3 | R | Α | С | TU | |---------|------------------------------|--|--------------------------|--------------------------|--|------------|-------------------------|--|---| | Ceramic | Case Size
(L" x W") | Specification/
Series | Capacitance
Code (pF) | Capacitance
Tolerance | Voltage | Dielectric | Failure Rate/
Design | Termination
Finish ¹ | Packaging/Grade
(C-Spec) ² | | | 0805
1206
1210
1812 | F = Open Mode
J = Open Mode
with Flexible
Termination | • | K = ±10%
M = ±20% | 4 = 16 V
3 = 25 V
5 = 50 V
1 = 100 V
2 = 200 V | R = X7R | A = N/A | C = 100%
Matte Sn
L = SnPb
(5% minimum) | See "Packaging
C-Spec
Ordering
Options Table"
below | ¹ Additional termination finish options may be available. Contact KEMET for details. ^{1,2} SnPb termination finish option is not available on automotive grade product. ² Additional reeling or packaging options may be available. Contact KEMET for details. # **Packaging C-Spec Ordering Options Table** | Packaging Type | Packaging/Grade
Ordering Code (C-Spec) | |---------------------------|---| | Commerc | ial Grade ¹ | | Bulk Bag | Blank | | 7" Tape & Reel/Unmarked | TU | | 7" Tape & Reel/Marked | TM | | Automoti | ve Grade ² | | 7" Reel | AUTO | | 13" Reel/Punched Paper | AUTO 7411 | | 13" Reel/Embossed Plastic | AUTO 7210 | ¹ C-Spec not required when ordering "Bulk Bag" packaging option. ### **Benefits** - -55°C to +125°C operating temperature range - · Open Mode/fail open design - · Mid to high capacitance flex mitigation - · Lead (Pb)-Free, RoHS and REACH compliant - EIA 0805, 1206, 1210, and 1812 case sizes - DC voltage ratings of 16 V, 25 V, 50 V, 100 V, and 200 V - Capacitance offerings ranging from 1,000 pF to 6.8 μF - Available capacitance tolerances of ±5%, ±10%, and ±20% - Non-polar device, minimizing installation concerns - 100% pure matte tin-plated termination finish allowing for excellent solderability - Commercial and Automotive (AEC–Q200) grades available - SnPb termination finish option available upon request (5% minimum) - Flexible termination option available upon request # **Applications** Typical applications include input side filtering (power plane/bus), high current (battery line) and circuits that cannot be fused to open when short circuits occur due to flex cracks. Markets include automotive applications that are directly connected to the battery and/or involve conversion to a 42 V system and raw power input side filtering in power conversion. ¹ The terms "Marked" and "Unmarked" pertain to laser marking option of components. ² Reeling tape options (Paper or Plastic) are dependent on capacitor case size (L"x W") and thickness dimension. See "Chip Thickness/Packaging Quantities" and "Tape & Reel Packaging Information" sections of this document. ² For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information" section of this document. ² All Automotive packaging C-Specs listed exclude packaging of laser mark components. Please contact KEMET if you require a laser marked option. # **Automotive C-Spec Information** KEMET Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP). Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO". This C-Spec was developed in order to better serve small and medium sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET's OEM Automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below). ### **Product Change Notification (PCN)** The KEMET Product Change Notification system is used to communicate primarily the following types of changes: - Product/process changes that affect product form, fit, function, and /or reliability - · Changes in manufacturing site - Product obsolescence | KEMET Automotive | Customer Noti | Days prior to | | |-----------------------------|----------------------------------|---------------|------------------| | C-Spec | Process/Product change | Obsolescence* | implementation | | KEMET assigned ¹ | Yes (with approval and sign off) | Yes | 180 days Minimum | | AUTO | Yes (without approval) | Yes | 90 days Minimum | ¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET. ### **Production Part Approval Process (PPAP)** The purpose of the Production Part Approval Process is: - To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts. - To provide the evidence that all customer engineering design record and specification requirements are properly understood and fulfilled by the manufacturing organization. - To demonstrate that the established manufacturing process has the potential to produce the part | KEMET
Automotive | | PPAP (Product Part Approval Process) Level | | | | | | | | | | | | | |--------------------------------|---|--|---|---|---|--|--|--|--|--|--|--|--|--| | C-Spec | 1 | 2 | 3 | 4 | 5 | | | | | | | | | | | KEMET
assigned ¹ | • | • | • | • | • | | | | | | | | | | | AUTO | 0 | | 0 | | | | | | | | | | | | ¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET. - Part Number specific PPAP available - Product family PPAP only # **Dimensions – Millimeters (Inches) – Standard Termination** | EIA
Size
Code | Metric
Size
Code | L
Length | W
Width | T
Thickness | B
Bandwidth | S
Separation
Minimum | Mounting
Technique | | |---------------------|------------------------|---------------------------|---------------------------|-----------------|---------------------------|----------------------------|-----------------------|--| | 0805 | 2012 | 2.00 (.079) ± 0.20 (.008) | 1.25 (.049) ± 0.20 (.008) | | 0.50 (0.02) ± 0.25 (.010) | 0.75 (.030) | Solder Wave or | | | 1206 | 3216 | 3.20 (.126) ± 0.20 (.008) | 1.60 (.063) ± 0.20 (.008) | See Table 2 for | 0.50 (0.02) ± 0.25 (.010) | | Solder Reflow | | | 1210 | 3225 | 3.20 (.126) ± 0.20 (.008) | 2.50 (.098) ± 0.20 (.008) | Thickness | 0.50 (0.02) ± 0.25 (.010) | N/A | Oaldan Daffarr Oala | | | 1812 | | | 3.20 (.126) ± 0.30 (.012) | | 0.60 (.024) ± 0.35 (.014) | | Solder Reflow Only | | # **Dimensions – Millimeters (Inches) – Flexible Termination** | EIA
Size
Code | Metric
Size
Code | L
Length | W
Width | T
Thickness | B
Bandwidth | S
Separation
Minimum | Mounting
Technique | |---------------------|------------------------|---------------------------|---------------------------|-----------------|---------------------------|----------------------------|-----------------------| | 0805 | 2012 | 2.00 (.079) ± 0.20 (.008) | 1.25 (.049) ± 0.20 (.008) | | 0.50 (0.02) ± 0.25 (.010) | 0.75 (.030) | Solder Wave or | | 1206 | 3216 | 3.30 (.130) ± 0.40 (.016) | 1.60 (.063) ± 0.20 (.008) | See Table 2 for | 0.60 (.024) ± 0.25 (.010) | | Solder Reflow | | 1210 | 3225 | 3.30 (.130) ± 0.40 (.016) | 2.50 (.098) ± 0.20 (.008) | Thickness | 0.60 (.024) ± 0.25 (.010) | N/A | Oaldar Daffarr Oala | | 1812 | 4532 | 4.50 (.178) ± 0.40 (.016) | 3.20 (.126) ± 0.30 (.012) | | 0.70 (.028) ± 0.35 (.014) | | Solder Reflow Only | ### **Qualification/Certification** Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance and Reliability. Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC–Q200, please visit their website at www.aecouncil.com. # **Environmental Compliance** Lead (Pb)-Free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option). ### **Electrical Parameters/Characteristics** | Item | Parameters/Characteristics | |--|---| | Operating Temperature Range | -55°C to +125°C | | Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC) | ±15% | | Aging Rate (Maximum % Capacitance Loss/Decade Hour) | 3.0% | | Dielectric Withstanding Voltage (DWV) | 250% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA) | | Dissipation Factor (DF) Maximum Limit @ 25°C | 5% (6.3 and 10 V), 3.5% (16 and 25 V) and 2.5% (50 to 250 V) | | Insulation Resistance (IR) Limit @ 25°C | See Insulation Resistance Limit Table (Rated voltage applied for 120 ±5 seconds @ 25°C) | Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours. To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits. Capacitance and dissipation factor (DF) measured under the following conditions: 1 kHz ± 50 Hz and 1.0 ± 0.2 Vrms if capacitance $\leq 10~\mu F$ 120 Hz \pm 10Hz and 0.5 \pm 0.1 Vrms if capacitance > 10 μ F Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON." ### **Post Environmental Limits** | | High Temperature Life, Biased Humidity, Moisture Resistance | | | | | | | | | | | | | | |------------|---|----------------------|--------------------------------|----------------------|--------------------------|--|--|--|--|--|--|--|--|--| | Dielectric | Rated DC
Voltage | Capacitance
Value | Dissipation Factor (Maximum %) | Capacitance
Shift | Insulation
Resistance | | | | | | | | | | | | > 25 | | 3.0 | | | | | | | | | | | | | X7R | 16/25 | All | 5.0 | ±20% | 10% of Initial Limi | | | | | | | | | | | | < 16 | | 7.5 | | | | | | | | | | | | # **Insulation Resistance Limit Table (X7R Dielectric)** | EIA Case Size | 1,000 Megohm
Microfarads or 100 GΩ | 500 Megohm
Microfarads or 10 GΩ | |---------------|---------------------------------------|------------------------------------| | 0201 | N/A | ALL | | 0402 | < 0.012 µF | ≥ 0.012 µF | | 0603 | < 0.047 µF | ≥ 0.047 µF | | 0805 | < 0.15 µF | ≥ 0.15 µF | | 1206 | < 0.47 µF | ≥ 0.47 µF | | 1210 | < 0.39 µF | ≥ 0.39 µF | | 1808 | ALL | N/A | | 1812 | < 2.2 µF | ≥ 2.2 µF | | 1825 | ALL | N/A | | 2220 | < 10 µF | ≥ 10 µF | | 2225 | ALL | N/A | # Table 1 – Capacitance Range/Selection Waterfall (0805 – 1812 Case Sizes) | | | Case
Ser | Size/ | | С | 0805 | iF | | | C | 1206 | F | | | С | 1210 | F | | | C18 | 12F | | |------------------------|-------------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|----------|----------|----------|-----| | Capacitance | Capacitance | Voltag | e Code | 4 | 3 | 5 | 1 | 2 | 4 | 3 | 5 | 1 | 2 | 4 | 3 | 5 | 1 | 2 | 3 | 5 | 1 | 2 | | | Code | Rated Volt | age (VDC) | 16 | 25 | 50 | 100 | 200 | 16 | 25 | 50 | 100 | 200 | 16 | 25 | 50 | 100 | 200 | 25 | 50 | 100 | 200 | | | | | itance | | | | | | | | | | | hip T | | | | | | | | | | 1,000 pF | 102 | K | M | DP | DP | DP | DP | DP | | | | <u> </u> | | | | | | | | | | | | 1,200 pF | 122 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | | | | | | 1,500 pF | 152 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | | | | | | 1,800 pF | 182 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | | | | | | 2,200 pF | 222 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | | | | | | 2,700 pF
3.300 pF | 272
332 | K
K | M
M | DP
DP | DP
DP | DP
DP | DP
DP | DP
DP | | | | | | | | | | | ŀ | | | | | 3,900 pF | 392
392 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | ŀ | | | | | 4,700 pF | 472 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | l | | | | | 5,600 pF | 562 | K | M | DP | DP | DP | DP | DP | l | | | | | | | | | | l | | | | | 6,800 pF | 682 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | | | | | | 8,200 pF | 822 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | | | | | | 10,000 pF | 103 | K | M | DP | DP | DP | DP | DP | | | | | | | | | | | | | | | | 12,000 pF | 123 | K | M | DP | DP | DP | DP | DG | İ | | | | | | | | | | İ | | | | | 15,000 pF | 153 | K | M | DP | DP | DP | DP | DG | | | | | | | | | | | | | | | | 18,000 pF | 183 | K | M | DP | DP | DP | DP | | EC | EC | EC | EC | EC | | | | | | | | | | | 22,000 pF | 223 | K | M | DP | DP | DP | DG | | EC | EC | EC | EC | EC | | | | | | | | | | | 27,000 pF | 273 | K | M | DP | DP | DP | DG | | EC | EC | EC | EC | EC | | | | | | | | | | | 33,000 pF | 333 | K | M | DP | DP | DP | DG | | EC | EC | EC | EC | EC | | | | | | ŀ | | | | | 39,000 pF | 393
473 | K
K | M
M | DP
DP | DP
DP | DP
DP | DG
DE | | EC
EC | EC
EC | EC
EC | EC
EC | EC
EG | | | | | | GB | GB | GB | GB | | 47,000 pF
56,000 pF | 563 | K | M | DP | DP | DP | DE | | EC | EC | EC | EC | EG | | | | | | GB | GB | GB | GB | | 68,000 pF | 683 | K | M | DP | DP | DG | DG | | EC | EC | EC | EC | EG | FD | FD | FD | FD | FD | GB | GB | GB | GB | | 82,000 pF | 823 | K | M | DP | DP | DG | 00 | | EC | EC | EC | EC | EG | FD | FD | FD | FD | FD | GB | GB | GB | GB | | 0.10 µF | 104 | K | M | DG | DG | DG | | | EC | EC | EC | EC | EG | FD | FD | FD | FD | FG | GB | GB | GB | GB | | 0.12 µF | 124 | K | M | DG | DG | | | | EC | EC | EC | EC | | FD | FD | FD | FD | FG | GB | GB | GB | GB | | 0.15 µF | 154 | К | M | DG | DG | | | | EC | EC | EC | EG | | FD | FD | FD | FD | FH | GB | GB | GB | GB | | 0.18 µF | 184 | K | M | DG | DG | | | | EC | EC | EC | EG | | FD | FD | FD | FD | FH | GB | GB | GB | GB | | 0.22 µF | 224 | K | M | DG | DP | DG | | | EC | EC | EC | ED | | FD | FD | FD | FG | FS | GB | GB | GB | GC | | 0.27 μF | 274 | K | M | DP | DP | | | | EC | EC | EC | | | FD | FD | FD | FG | | GB | GB | GB | GF | | 0.33 µF | 334 | K | M | DP | DG | | | | EG | EG | EG | EG | | FD | FD | FD | FH | | GB | GB | GB | GK | | 0.39 µF | 394 | K | M | DP | DG | | | | EG | EG | | | | FD | FD | FG | FH | | GB | GB | GB | GL | | 0.47 µF | 474 | K | M | DE | DG | | | | EG | EG | EC | | | FD
FD | FD
FD | FG | FJ | | GB
GB | GB | GC
GD | | | 0.56 μF
0.68 μF | 564
684 | K
K | M
M | DG | | | | | EG
EG | | | | | FD | FG | FG
FH | FR
FR | | GB | GB
GD | GF | | | 0.82 μF | 824 | K | M | 00 | | | | | EG | | | | | FD | FG | FH | FR | | GD | GD | GK | | | 1.0 μF | 105 | K | M | | | | | | EG | EC | EH | | | FD | FH | FJ | FS | | GN | GN | GM | | | 1.2 µF | 125 | K | M | | | | | | | | | | | FG | | | | | | | | | | 1.5 µF | 155 | К | M | | | | | | | | | | | FH | | | | | 1 | | | | | 1.8 µF | 185 | К | M | | | | | | | | | | | FH | | | | | | | | | | 2.2 µF | 225 | K | M | | | | | | EC | EH | | | | FJ | FM | FM | | | | | | | | 2.7 µF | 275 | K | М | 3.3 µF | 335 | K | M | | | | | | | | | | | FM | | | | | | | | | | 3.9 µF | 395 | K | M | | | | | | F.1 | | | | | F0 | E14 | | | | CV | CV | | | | 4.7 μF | 475
695 | K
K | M
M | | | | | | EH | | | | | FG
FS | FM
FS | | | | GK | GK | | | | 6.8 µF | 685 | | age (VDC) | 16 | 25 | 50 | 100 | 200 | 16 | 25 | 50 | 100 | 200 | 16 | 25 | 50 | 100 | 200 | 25 | 50 | 100 | 200 | | | Capacitance | | e Code | 4 | 3 | 5 | 1 | 2 | 4 | 3 | 5 | 1 | 2 | 4 | 3 | 5 | 1 | 2 | 3 | 5 | 1 | 2 | | Capacitance | Code | Case | Size/ | • | | 0805 | | | | | 1206 | | | | | 1210 | | | | | 12F | | **Table 2 – Chip Thickness/Packaging Quantities** | Thickness | Case | Thickness ± | Paper G | Quantity | Plastic (| Quantity | | |-----------|------|-----------------|---------|----------|------------------|----------|--| | Code | Size | Range (mm) | 7" Reel | 13" Reel | 7" Reel | 13" Reel | | | DP | 0805 | 0.90 ± 0.10* | 4,000 | 15,000 | 0 | 0 | | | DE | 0805 | 1.00 ± 0.10 | 0 | 0 | 2,500 | 10,000 | | | DG | 0805 | 1.25 ± 0.15 | 0 | 0 | 2,500 | 10,000 | | | EC | 1206 | 0.90 ± 0.10 | 0 | 0 | 4,000 | 10,000 | | | ED | 1206 | 1.00 ± 0.10 | 0 | 0 | 2,500 | 10,000 | | | EG | 1206 | 1.60 ± 0.15 | 0 | 0 | 2,000 | 8,000 | | | EH | 1206 | 1.60 ± 0.20 | 0 | 0 | 2,000 | 8,000 | | | FD | 1210 | 0.95 ± 0.10 | 0 | 0 | 4,000 | 10,000 | | | FG | 1210 | 1.25 ± 0.15 | 0 | 0 | 2,500 | 10,000 | | | FH | 1210 | 1.55 ± 0.15 | 0 | 0 | 2,000 | 8,000 | | | FM | 1210 | 1.70 ± 0.20 | 0 | 0 | 2,000 | 8,000 | | | FJ | 1210 | 1.85 ± 0.20 | 0 | 0 | 2,000 | 8,000 | | | FR | 1210 | 2.25 ± 0.20 | 0 | 0 | 2,000 | 8,000 | | | FS | 1210 | 2.50 ± 0.30 | 0 | 0 | 1,000 | 4,000 | | | GB | 1812 | 1.00 ± 0.10 | 0 | 0 | 1,000 | 4,000 | | | GC | 1812 | 1.10 ± 0.10 | 0 | 0 | 1,000 | 4,000 | | | GD | 1812 | 1.25 ± 0.15 | 0 | 0 | 1,000 | 4,000 | | | GF | 1812 | 1.50 ± 0.10 | 0 | 0 | 1,000 | 4,000 | | | GK | 1812 | 1.60 ± 0.20 | 0 | 0 | 1,000 | 4,000 | | | GN | 1812 | 1.70 ± 0.20 | 0 | 0 | 1,000 | 4,000 | | | GL | 1812 | 1.90 ± 0.20 | 0 | 0 | 500 | 2,000 | | | GM | 1812 | 2.00 ± 0.20 | 0 | 0 | 500 | 2,000 | | | Thickness | Case | Thickness ± | 7" Reel | 13" Reel | 7" Reel | 13" Reel | | | Code | Size | Range (mm) | Paper C | Quantity | Plastic Quantity | | | Package quantity based on finished chip thickness specifications. # Table 3A – Land Pattern Design Recommendations per IPC-7351 – Standard Termination | EIA
Size
Code | Size Size Maximum (Most) Land Protrusion (mm) | | | | | | ı | Media | sity Lev
an (Nor
rotrusio | |) | Density Level C: Minimum (Least) Land Protrusion (mm) | | | | | | |---------------------|--|------|------|------|------|------|------|-------|---------------------------------|------|------|---|------|------|------|------|--| | Oodc | Oodc | C | Y | Х | V1 | V2 | С | Y | X | V1 | V2 | С | Υ | X | V1 | V2 | | | 0805 | 2012 | 1.00 | 1.35 | 1.55 | 4.40 | 2.60 | 0.90 | 1.15 | 1.45 | 3.50 | 2.00 | 0.75 | 0.95 | 1.35 | 2.80 | 1.70 | | | 1206 | 3216 | 1.60 | 1.35 | 1.90 | 5.60 | 2.90 | 1.50 | 1.15 | 1.80 | 4.70 | 2.30 | 1.40 | 0.95 | 1.70 | 4.00 | 2.00 | | | 1210 | 3225 | 1.60 | 1.35 | 2.80 | 5.65 | 3.80 | 1.50 | 1.15 | 2.70 | 4.70 | 3.20 | 1.40 | 0.95 | 2.60 | 4.00 | 2.90 | | | 1210¹ | 3225 | 1.50 | 1.60 | 2.90 | 5.60 | 3.90 | 1.40 | 1.40 | 2.80 | 4.70 | 3.30 | 1.30 | 1.20 | 2.70 | 4.00 | 3.00 | | | 1812 | 4532 | 2.15 | 1.60 | 3.60 | 6.90 | 4.60 | 2.05 | 1.40 | 3.50 | 6.00 | 4.00 | 1.95 | 1.20 | 3.40 | 5.30 | 3.70 | | ¹ Only for capacitance values ≥ 22 μF **Density Level A:** For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes. **Density Level B:** For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351). Image below based on Density Level B for an EIA 1210 case size. # Table 3B – Land Pattern Design Recommendations per IPC-7351 – Flexible Termination | EIA
Size
Code | Metric
Size
Code | Maximum (Most) | | | Density Level B:
Median (Nominal)
Land Protrusion (mm) | | | | Density Level C: Minimum (Least) Land Protrusion (mm) | | | | | | | | |---------------------|------------------------|----------------|------|------|--|------|------|------|---|------|------|------|------|------|------|------| | Oouc | Jouc | С | Y | X | V1 | V2 | С | Y | X | V1 | V2 | С | Υ | Х | V1 | V2 | | 0805 | 2012 | 1.00 | 1.35 | 1.55 | 4.40 | 2.60 | 0.90 | 1.15 | 1.45 | 3.50 | 2.00 | 0.75 | 0.95 | 1.35 | 2.80 | 1.70 | | 1206 | 3216 | 1.60 | 1.65 | 1.90 | 5.90 | 2.90 | 1.50 | 1.45 | 1.80 | 5.00 | 2.30 | 1.40 | 1.25 | 1.70 | 4.30 | 2.00 | | 1210 | 3225 | 1.60 | 1.65 | 2.80 | 5.90 | 3.80 | 1.50 | 1.45 | 2.70 | 5.00 | 3.20 | 1.40 | 1.25 | 2.60 | 4.30 | 2.90 | | 1812 | 4532 | 2.10 | 1.80 | 3.60 | 7.00 | 4.60 | 2.00 | 1.60 | 3.50 | 6.10 | 4.00 | 1.90 | 1.40 | 3.40 | 5.40 | 3.70 | **Density Level A:** For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes. **Density Level B:** For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351). Image below based on Density Level B for an EIA 1210 case size. # **Soldering Process** #### **Recommended Soldering Technique:** - Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206 - · All other EIA case sizes are limited to solder reflow only ### **Recommended Reflow Soldering Profile:** KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions. | Profile Feature | Termination Finish | | | | | |--|--------------------|--------------------|--|--|--| | Frome reature | SnPb | 100% Matte Sn | | | | | Preheat/Soak | | | | | | | Temperature Minimum (T _{Smin}) | 100°C | 150°C | | | | | Temperature Maximum (T _{Smax}) | 150°C | 200°C | | | | | Time (t_s) from T_{smin} to T_{smax} | 60 – 120 seconds | 60 – 120 seconds | | | | | Ramp-Up Rate (T _L to T _P) | 3°C/second maximum | 3°C/second maximum | | | | | Liquidous Temperature (T _L) | 183°C | 217°C | | | | | Time Above Liquidous (t _L) | 60 – 150 seconds | 60 – 150 seconds | | | | | Peak Temperature (T _P) | 235°C | 260°C | | | | | Time Within 5°C of Maximum
Peak Temperature (t _P) | 20 seconds maximum | 30 seconds maximum | | | | | Ramp-Down Rate (T _P to T _L) | 6°C/second maximum | 6°C/second maximum | | | | | Time 25°C to Peak
Temperature | 6 minutes maximum | 8 minutes maximum | | | | Note 1: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow. # Table 4 - Performance & Reliability: Test Methods and Conditions | Stress | Reference | Test or Inspection Method | |------------------------|------------------------------------|---| | Terminal Strength | JIS-C-6429 | Appendix 1, Note: Force of 1.8 kg for 60 seconds. | | Board Flex | JIS-C-6429 | Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for C0G. Flexible termination system – 3.0 mm (minimum). | | | | Magnification 50 X. Conditions: | | Solderability | J-STD-002 | a) Method B, 4 hours @ 155°C, dry heat @ 235°C | | Solderability | J-31D-002 | b) Method B @ 215°C category 3 | | | | c) Method D, category 3 @ 260°C | | Temperature Cycling | JESD22 Method JA-104 | 1,000 Cycles (-55°C to +125°C). Measurement at 24 hours +/- 2 hours after test conclusion. | | Discord Housidite. | MII –STD–202 Method 103 | Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion. | | Biased Humidity | MIL-STD-202 Method 103 | Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion. | | Moisture Resistance | MIL-STD-202 Method 106 | t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered.
Measurement at 24 hours +/- 2 hours after test conclusion. | | Thermal Shock | MIL-STD-202 Method 107 | -55°C/+125°C. Note: Number of cycles required – 300, maximum transfer time – 20 seconds, dwell time – 15 minutes. Air – Air. | | High Temperature Life | MIL-STD-202 Method 108
/EIA-198 | 1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied. | | Storage Life | MIL-STD-202 Method 108 | 150°C, 0 VDC for 1,000 hours. | | Vibration | MIL-STD-202 Method 204 | 5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz | | Mechanical Shock | MIL-STD-202 Method 213 | Figure 1 of Method 213, Condition F. | | Resistance to Solvents | MIL-STD-202 Method 215 | Add aqueous wash chemical, OKEM Clean or equivalent. | # **Storage and Handling** Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature- reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt. ### **Construction – Standard Termination** ### **Construction – Flexible Termination** ### **Capacitor Marking (Optional):** These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA–198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only. Laser marking option is not available on: - C0G, Ultra Stable X8R and Y5V dielectric devices - EIA 0402 case size devices - EIA 0603 case size devices with Flexible Termination option. - KPS Commercial and Automotive Grade stacked devices. - X7R dielectric products in capacitance values outlined below | EIA Case Size | Metric Size Code | Capacitance | |---------------|------------------|-------------| | 0603 | 1608 | ≤ 170 pF | | 0805 | 2012 | ≤ 150 pF | | 1206 | 3216 | ≤ 910 pF | | 1210 | 3225 | ≤ 2,000 pF | | 1808 | 4520 | ≤ 3,900 pF | | 1812 | 4532 | ≤ 6,700 pF | | 1825 | 4564 | ≤ 0.018 µF | | 2220 | 5650 | ≤ 0.027 µF | | 2225 | 5664 | ≤ 0.033 µF | Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100 μ F. Orientation of marking is vendor optional. # Capacitor Marking (Optional) cont'd | | Capacitance (pF) For Various Alpha/Numeral Identifiers | | | | | | | | | | | | | |-----------|--|------------------|----|-----|-------|--------|---------|-----------|------------|-------------|--|--|--| | Alpha | | | | ı | | Numera | ıl | | | | | | | | Alpha | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | Character | | Capacitance (pF) | | | | | | | | | | | | | Α | 0.1 | 10 | 10 | 100 | 1,000 | 10,000 | 100,000 | 1,000,000 | 10,000,000 | 100,000,000 | | | | | В | 0.11 | 1.1 | 11 | 110 | 1,100 | 11,000 | 110,000 | 1,100,000 | 11,000,000 | 110,000,000 | | | | | С | 0.12 | 12 | 12 | 120 | 1,200 | 12,000 | 120,000 | 1,200,000 | 12,000,000 | 120,000,000 | | | | | D | 0.13 | 13 | 13 | 130 | 1,300 | 13,000 | 130,000 | 1,300,000 | 13,000,000 | 130,000,000 | | | | | E | 0.15 | 15 | 15 | 150 | 1,500 | 15,000 | 150,000 | 1,500,000 | 15,000,000 | 150,000,000 | | | | | F | 0.16 | 16 | 16 | 160 | 1,600 | 16,000 | 160,000 | 1,600,000 | 16,000,000 | 160,000,000 | | | | | G | 0.18 | 18 | 18 | 180 | 1,800 | 18,000 | 180,000 | 1,800,000 | 18,000,000 | 180,000,000 | | | | | Н | 0.2 | 20 | 20 | 200 | 2,000 | 20,000 | 200,000 | 2,000,000 | 20,000,000 | 200,000,000 | | | | | J | 0.22 | 22 | 22 | 220 | 2,200 | 22,000 | 220,000 | 2,200,000 | 22,000,000 | 220,000,000 | | | | | К | 0.24 | 2.4 | 24 | 240 | 2,400 | 24,000 | 240,000 | 2,400,000 | 24,000,000 | 240,000,000 | | | | | L | 0.27 | 2.7 | 27 | 270 | 2,700 | 27,000 | 270,000 | 2,700,000 | 27,000,000 | 270,000,000 | | | | | М | 0.3 | 3 0 | 30 | 300 | 3,000 | 30,000 | 300,000 | 3,000,000 | 30,000,000 | 300,000,000 | | | | | N | 0.33 | 33 | 33 | 330 | 3,300 | 33,000 | 330,000 | 3,300,000 | 33,000,000 | 330,000,000 | | | | | Р | 0.36 | 36 | 36 | 360 | 3,600 | 36,000 | 360,000 | 3,600,000 | 36,000,000 | 360,000,000 | | | | | Q | 0.39 | 39 | 39 | 390 | 3,900 | 39,000 | 390,000 | 3,900,000 | 39,000,000 | 390,000,000 | | | | | R | 0.43 | 4 3 | 43 | 430 | 4,300 | 43,000 | 430,000 | 4,300,000 | 43,000,000 | 430,000,000 | | | | | S | 0.47 | 4.7 | 47 | 470 | 4,700 | 47,000 | 470,000 | 4,700,000 | 47,000,000 | 470,000,000 | | | | | T | 0.51 | 5.1 | 51 | 510 | 5,100 | 51,000 | 510,000 | 5,100,000 | 51,000,000 | 510,000,000 | | | | | U | 0.56 | 5 6 | 56 | 560 | 5,600 | 56,000 | 560,000 | 5,600,000 | 56,000,000 | 560,000,000 | | | | | V | 0.62 | 62 | 62 | 620 | 6,200 | 62,000 | 620,000 | 6,200,000 | 62,000,000 | 620,000,000 | | | | | W | 0.68 | 68 | 68 | 680 | 6,800 | 68,000 | 680,000 | 6,800,000 | 68,000,000 | 680,000,000 | | | | | Х | 0.75 | 7 5 | 75 | 750 | 7,500 | 75,000 | 750,000 | 7,500,000 | 75,000,000 | 750,000,000 | | | | | Υ | 0.82 | 82 | 82 | 820 | 8,200 | 82,000 | 820,000 | 8,200,000 | 82,000,000 | 820,000,000 | | | | | Z | 0.91 | 9.1 | 91 | 910 | 9,100 | 91,000 | 910,000 | 9,100,000 | 91,000,000 | 910,000,000 | | | | | а | 0.25 | 25 | 25 | 250 | 2,500 | 25,000 | 250,000 | 2,500,000 | 25,000,000 | 250,000,000 | | | | | b | 0.35 | 3 5 | 35 | 350 | 3,500 | 35,000 | 350,000 | 3,500,000 | 35,000,000 | 350,000,000 | | | | | d | 0.4 | 4 0 | 40 | 400 | 4,000 | 40,000 | 400,000 | 4,000,000 | 40,000,000 | 400,000,000 | | | | | е | 0.45 | 4 5 | 45 | 450 | 4,500 | 45,000 | 450,000 | 4,500,000 | 45,000,000 | 450,000,000 | | | | | f | 0.5 | 5 0 | 50 | 500 | 5,000 | 50,000 | 500,000 | 5,000,000 | 50,000,000 | 500,000,000 | | | | | m | 0.6 | 6 0 | 60 | 600 | 6,000 | 60,000 | 600,000 | 6,000,000 | 60,000,000 | 600,000,000 | | | | | n | 0.7 | 7 0 | 70 | 700 | 7,000 | 70,000 | 700,000 | 7,000,000 | 70,000,000 | 700,000,000 | | | | | t | 0.8 | 8 0 | 80 | 800 | 8,000 | 80,000 | 800,000 | 8,000,000 | 80,000,000 | 800,000,000 | | | | | у | 0.9 | 90 | 90 | 900 | 9,000 | 90,000 | 900,000 | 9,000,000 | 90,000,000 | 900,000,000 | | | | # **Tape & Reel Packaging Information** KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips. Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm) | | | Embosse | ed Plastic | Punched Paper | | | |-------------------|----------------|--------------------------|------------|--------------------------|----------|--| | EIA Case Size | Tape size (W)* | 7" Reel | 13" Reel | 7" Reel | 13" Reel | | | | | Pitch (P ₁)* | | Pitch (P ₁)* | | | | 01005 – 0402 | 8 | | | 2 | 2 | | | 0603 | 8 | | | 4 | 4 | | | 0805 | 8 | 4 | 4 | 4 | 4 | | | 1206 – 1210 | 8 | 4 | 4 | 4 | 4 | | | 1805 – 1808 | 12 | 4 | 4 | | | | | ≥ 1812 | 12 | 8 | 8 | | | | | KPS 1210 | 12 | 8 | 8 | | | | | KPS 1812 & 2220 | 16 | 12 | 12 | | | | | Array 0508 & 0612 | 8 | 4 | 4 | | | | ^{*}Refer to Figures 1 & 2 for W and P₁ carrier tape reference locations. ^{*}Refer to Tables 6 & 7 for tolerance specifications. # Figure 1 – Embossed (Plastic) Carrier Tape Dimensions # Table 6 – Embossed (Plastic) Carrier Tape Dimensions Metric will govern | | Constant Dimensions — Millimeters (Inches) | | | | | | | | | | |-----------|--|----------------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|----------------------------------|------------------|---------------------------|--| | Tape Size | D ₀ | D ₁ Minimum
Note 1 | E ₁ | P ₀ | P ₂ | R Reference
Note 2 | S ₁ Minimum
Note 3 | T
Maximum | T ₁
Maximum | | | 8 mm | | 1.0
(0.039) | | | | 25.0
(0.984) | | | | | | 12 mm | 1.5 +0.10/-0.0
(0.059 +0.004/-0.0) | 1.5 | 1.75 ±0.10
(0.069 ±0.004) | 4.0 ±0.10
(0.157 ±0.004) | 2.0 ±0.05
(0.079 ±0.002) | 30 | 0.600
(0.024) | 0.600
(0.024) | 0.100
(0.004) | | | 16 mm | | (0.059) | | | | (1.181) | | | | | | | Variable Dimensions — Millimeters (Inches) | | | | | | | | | | | Tape Size | Pitch | B ₁ Maximum
Note 4 | E ₂
Minimum | F | P ₁ | T ₂
Maximum | W
Maximum | A_0,B_0 | & K ₀ | | | 8 mm | Single (4 mm) | 4.35
(0.171) | 6.25
(0.246) | 3.5 ±0.05
(0.138 ±0.002) | 4.0 ±0.10
(0.157 ±0.004) | 2.5
(0.098) | 8.3
(0.327) | | | | | 12 mm | Single (4 mm) &
Double (8 mm) | 8.2
(0.323) | 10.25
(0.404) | 5.5 ±0.05
(0.217 ±0.002) | 8.0 ±0.10
(0.315 ±0.004) | 4.6
(0.181) | 12.3
(0.484) | Note 5 | | | | 16 mm | Triple (12 mm) | 12.1
(0.476) | 14.25
(0.561) | 7.5 ±0.05
(0.138 ±0.002) | 12.0 ±0.10
(0.157 ±0.004) | 4.6
(0.181) | 16.3
(0.642) | | | | - 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other. - 2. The tape with or without components shall pass around R without damage (see Figure 6). - 3. If S₄ < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b). - 4. B, dimension is a reference dimension for tape feeder clearance only. - 5. The cavity defined by A_n, B_n and K_n shall surround the component with sufficient clearance that: - (a) the component does not protrude above the top surface of the carrier tape. - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed. - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3). - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4). - (e) for KPS Series product, A_0 and B_0 are measured on a plane 0.3 mm above the bottom of the pocket. - (f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements. # Figure 2 – Punched (Paper) Carrier Tape Dimensions ### Table 7 – Punched (Paper) Carrier Tape Dimensions Metric will govern | | Constant Dimensions — Millimeters (Inches) | | | | | | | | | | |-----------|--|------------------------------|-----------------------------|-----------------------------|-------------------------|-----------------|-----------------------|--|--|--| | Tape Size | D ₀ | E ₁ | P ₀ | P ₂ | T ₁ Maximum | G Minimum | R Reference
Note 2 | | | | | 8 mm | 1.5 +0.10 -0.0
(0.059 +0.004 -0.0) | 1.75 ±0.10
(0.069 ±0.004) | 4.0 ±0.10
(0.157 ±0.004) | 2.0 ±0.05
(0.079 ±0.002) | 0.10
(0.004) Maximum | 0.75
(0.030) | 25
(0.984) | | | | | | Variable Dimensions — Millimeters (Inches) | | | | | | | | | | | Tape Size | Pitch | E2 Minimum | F | P ₁ | T Maximum | W Maximum | $A_0 B_0$ | | | | | 8 mm | Half (2 mm) | 6.25 | 3.5 ±0.05 | 2.0 ±0.05
(0.079 ±0.002) | 1.1 | 8.3
(0.327) | Note 1 | | | | | 8 mm | Single (4 mm) | (0.246) | (0.138 ±0.002) | 4.0 ±0.10
(0.157 ±0.004) | (0.098) | 8.3
(0.327) | Note 1 | | | | - 1. The cavity defined by A_n , B_n and T shall surround the component with sufficient clearance that: - a) the component does not protrude beyond either surface of the carrier tape. - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed. - c) rotation of the component is limited to 20° maximum (see Figure 3). - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4). - e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements. - 2. The tape with or without components shall pass around R without damage (see Figure 6). # **Packaging Information Performance Notes** - 1. Cover Tape Break Force: 1.0 Kg minimum. - 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be: | Tape Width | Peel Strength | |--------------|----------------------------------| | 8 mm | 0.1 to 1.0 Newton (10 to 100 gf) | | 12 and 16 mm | 0.1 to 1.3 Newton (10 to 130 gf) | The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute. **3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624.* # Figure 3 – Maximum Component Rotation Figure 4 - Maximum Lateral Movement Figure 5 - Bending Radius Figure 6 – Reel Dimensions Note: Drive spokes optional; if used, dimensions B and D shall apply. Table 8 - Reel Dimensions Metric will govern | | Constant Dimensions — Millimeters (Inches) | | | | | | | | | | |-----------|--|---------------------------------------|--|---|--|--|--|--|--|--| | Tape Size | A | B Minimum | С | D Minimum | | | | | | | | 8 mm | 178 ±0.20 | | | | | | | | | | | 12 mm | (7.008 ±0.008)
or | 1.5
(0.059) | 13.0 +0.5/-0.2
(0.521 +0.02/-0.008) | 20.2
(0.795) | | | | | | | | 16 mm | 330 ±0.20
(13.000 ±0.008) | , | , | , | | | | | | | | | Variable Dimensions — Millimeters (Inches) | | | | | | | | | | | Tape Size | N Minimum | W ₁ | W ₂ Maximum | W ₃ | | | | | | | | 8 mm | | 8.4 +1.5/-0.0
(0.331 +0.059/-0.0) | 14.4
(0.567) | | | | | | | | | 12 mm | 50
(1.969) | 12.4 +2.0/-0.0
(0.488 +0.078/-0.0) | 18.4
(0.724) | Shall accommodate tape width without interference | | | | | | | | 16 mm | | 16.4 +2.0/-0.0
(0.646 +0.078/-0.0) | 22.4
(0.882) | | | | | | | | # Figure 7 – Tape Leader & Trailer Dimensions Figure 8 – Maximum Camber # **KEMET Corporation World Headquarters** 2835 KEMET Way Simpsonville, SC 29681 Mailing Address: P.O. Box 5928 Greenville, SC 29606 www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521 **Corporate Offices** Fort Lauderdale, FL Tel: 954-766-2800 ### **North America** # Southeast Lake Mary, FL Tel: 407-855-8886 #### Northeast Wilmington, MA Tel: 978-658-1663 # Central Novi, MI Tel: 248-306-9353 #### West Milpitas, CA Tel: 408-433-9950 ### Mexico Guadalajara, Jalisco Tel: 52-33-3123-2141 ### **Europe** ### Southern Europe Sasso Marconi, Italy Tel: 39-051-939111 Skopje, Macedonia Tel: 389-2-55-14-623 ### **Central Europe** Landsberg, Germany Tel: 49-8191-3350800 Kamen, Germany Tel: 49-2307-438110 ### **Northern Europe** Harlow, United Kingdom Tel: 44-1279-460122 Espoo, Finland Tel: 358-9-5406-5000 ### Asia ### **Northeast Asia** Hong Kong Tel: 852-2305-1168 Shenzhen, China Tel: 86-755-2518-1306 Beijing, China Tel: 86-10-5877-1075 Shanghai, China Tel: 86-21-6447-0707 Seoul, South Korea Tel: 82-2-6294-0550 Taipei, Taiwan Tel: 886-2-27528585 # **Southeast Asia** Singapore Tel: 65-6701-8033 Penang, Malaysia Tel: 60-4-6430200 Bangalore, India Tel: 91-806-53-76817 Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation. #### **Disclaimer** All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained. Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.